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Abstract

The Monte Carlo Independent Column Approximation (McICA) computes domain-average,

broadband radiative ux pro�les within conventional global climate models (GCMs). While

McICA is unbiased with respect to the full ICA, it generates, as a by-product, random noise.

If this by-product a�ects statistically signi�cant impacts on GCM simulations, it could limit

the usefulness of McICA. This paper assesses the impact of McICA's random noise on six

GCMs. To this end, the GCMs performed ensembles of 14-day long simulations for various

renditions of McICA; each with di�ering amounts of random noise. As seen in the past,

low cloud fraction and surface temperature were a�ected most by noise. However, all GCM

simulations using operationally viable renditions of McICA showed no statistically signi�-

cant impacts; even for precipitation, a highly intermittent variable that one might expect to

be sensitive to random uctuations. Two GCMs showed statistically signi�cant responses

using an academic version of McICA that generates overly large sampling noise. Time series

analyses of high resolution (i.e., typically 2 hourly) data revealed that uctuations associated

with most variables and GCMs are immune to McICA noise. Moreover, the nature of these

uctuations can vary substantially among GCMs and most often they overwhelm any noise

impacts. Overall, the results presented here corroborate a range of previous studies done

on one GCM at a time: random noise produced by recommended versions of McICA has

statistically insigni�cant a�ects on GCM simulations.
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1 Introduction

1.1 Background

It is recognized widely that if general circulation models (GCMs) are to satisfactorily simulate

Earth's climate, physical processes responsible for hydro-radiative feedback mechanisms must

be addressed and represented well (e.g., Aires and Rossow 2003; Randall et al. 2003).

Failing to cross this ill-de�ned line, a GCM stands a good chance of serving only to heighten

confusion surrounding explanation, and thus simulation, of the Earth-atmosphere system (cf.

IPCC 2007). Central to adequate representation of hydro-radiative feedbacks lies numerical

simulation of atmospheric radiative transfer (e.g., Stephens 2005).

The common purpose for doing radiative transfer calculations in GCMs is to provide

atmospheric and surface broadband ux convergence rates. Since the mid-1970s GCMs have

employed multi-layer two-stream approximations (TSAs) of the radiative transfer equation

(RTE) (Meador and Weaver 1980). At the heart of TSAs is the assumption that atmospheric

layers are horizontally homogeneous. Hence, radiation owing within a GCM column is as-

sumed not to interact with neighbouring columns. This is the independent column approxi-

mation (ICA) (Stephens et al. 1991). Given that horizontal grid-spacings exceed 50 km in

most GCMs, it is reasonable to apply the ICA at a GCM's inner-scale.

Given the task at hand, multi-layer TSA algorithms eventually came to address columns

whose layers were only partially �lled by clouds which, in turn, overlapped vertically accord-

ing to idealized rules; notably maximum-random overlap (MRO) (Geleyn and Hollingsworth

1979; Morcrette and Fouquart 1986; Tian and Curry 1989; Stubenrauch et al. 1997). Given
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that MRO systematically underestimates vertically-projected cloud fraction (R�ais�anen et al.

2004), GCM radiative transfer codes based on MRO rely on horizontally homogenous clouds

that are too attenuative relative to variable clouds with the same mean optical thickness (cf.

Barker et al. 1999, 2003; Cole et al. 2005).

While several attempts have been made to account for e�ects of horizontal variations in

single-layer clouds (e.g., Stephens 1988; Davis et al. 1990; Cahalan et al. 1994; Barker 1996;

Cairns et al. 2000), they resemble each other in that they use the TSA, strive for analytic

expressions for layer reectance and transmittance, but pay little attention to covariations

in the horizontal and vertical. Oreopoulos and Barker (1999) recognized the untenability

of investing the MRO scheme with horizontally variable clouds, but their model and results

resembled other attempts to account for unresolved cloud uctuations in 1D codes: limited

ranges of applicability and, seemingly, irreconcilable biases relative to the ICA.

Judging from GCM radiative transfer algorithms developed from the late 1970s to early

2000s, it could be argued that a paradigm was established based on the logic:

because radiative uxes depend on cloud structure, this implies that descriptions

of cloud structure at scales �x < �xGCM, where �xGCM is GCM grid-spacing,

should be a subset of (i.e., built directly into) the radiative transfer algorithm.

There is, however, no sound reason to believe that this logic will lead to algorithms that either

allow for satisfactory description of cloud properties or account properly for interactions

between radiation and clouds at scales smaller than �xGCM. Indeed, models based on this

logic seem bound to approximations, limitations, and biases.
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1.2 The Monte Carlo-based solution

If a GCM's column were to be resolved into J subcolumns, and the ICA applied to them,

domain-average, broadband uxes would be de�ned as

hF i = 1

J

JX
j=1

KX
k=1

F (j; k); (1)

where K is the number of spectral intervals, and F is ux from a 1D solution of the RTE.

While (1) is the standard aspired to by GCM radiation algorithms (Collins 2001), it is

computationally intractable. As an alternative to (1), and the aforementioned 1D solvers,

Barker et al. (2002) proposed the Monte Carlo ICA (McICA) method. McICA rests on

sampling stochastically-generated subcolumns of a GCM column, performing 1D radiative

transfer calculations on them, and averaging the results (Pincus et al. 2003, 2006; R�ais�anen

et al. 2004). As sampling is done during spectral integration, McICA reduces (1) to a single

sum over k.

McICA represents a distinct departure from conventional methods because it separates

the description of unresolved media from the radiative transfer algorithm while remaining

unbiased with respect to (1). As such, it is extremely exible for it admits any one-point

statistical description of unresolved media, and subgrid variability can be handled easily

by any 1D solution of the RTE and not just TSAs. Moreover, because a basic TSA (e.g.,

Wiscombe 1977) is used, McICA execution times are close to, if not less than, those of

conventional schemes. As a by-product, however, McICA produces ux pro�les that contain

sampling noise.

Three studies (Pincus et al. 2006; R�ais�anen et al. 2005; Morcrette et al. 2008) suggest
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that McICA noise can be reduced to the point of having negligible impact on GCM simu-

lations. R�ais�anen et al.'s (2005) tests with the National Center for Atmospheric Research

(NCAR) Community Atmospheric Model version 1.8 (CAM-v1.8) showed, however, that if

large enough, McICA's noise can have statistically signi�cant a�ects on GCM simulations.

Thus, the main point of the current study is to assess the sensitivities of several GCMs, with

di�ering physical parametrizations and dynamical cores, to stochastic noise generated by

McICA. To this end, each GCM, with various renditions of McICA and a suitable stochastic

subgrid-scale cloud generator, performed 14-day ensemble simulations.

The following two sections describe the experiments and the GCMs involved in the in-

tercomparison. The fourth section presents the magnitudes of McICA noise and summarizes

the results of the experiments, and the �nal section contains conclusions.

2 Experimental design

Table 1 summarizes the GCMs used in this study. The experiments performed by each GCM

follow those performed by R�ais�anen et al. (2005). These experiments are summarized in the

following subsections, but �rst the rationale for the experiments is discussed.

2.1 Rationale

Stochastic uctuations of radiative uxes generated by McICA can be thought of as extra-

neous information injected into a GCM at its radiative timestep and grid-spacing. For a

fairly noisy version of McICA, R�ais�anen and Barker (2004) estimated typical standard devi-
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ations for instantaneous net surface irradiances to be �50 W m�2; the vast majority due to

solar radiation. From timestep-to-timestep and cell-to-cell, McICA noise is uncorrelated so

standard deviations of accumulated uxes decay like 1/
p
N where N is number of timesteps

or gridpoints. Given that the radiative timestep for most GCMs is �1 h, the magnitude of

McICA noise for diurnal-mean net surface uxes is O(10 W m�2). As can be seen in Fig.

1, this is much smaller than diurnal standard deviations for surface irradiance that arise via

the diurnal solar cycle (which are approximately half the values shown). It stands to reason,

therefore, that for McICA's noise to excite change, it would have to do so quickly. Likewise,

if noise-induced, short-term impacts yield signi�cant biases, one can expect those biases to

e�ectively force slower climatic variables and thus jeopardize McICA's utility.

Following this line of reasoning, relatively short simulations should su�ce to elucidate

impacts of McICA's stochastic noise on fast components of the climate system. Since slower

components, such as deep soil moisture and mixed-layer ocean temperature, respond to

surface energy budgets integrated over weeks, it is hypothesized that if fast components do

not respond to high frequency noise, long-term climate simulations will not respond either.

This rationale resembles that of the U.S. DoE's Climate Change Prediction Program (CCPP)

and Atmospheric Radiation Measurement (ARM) Program (CCPP-ARM) Parameterization

Testbed (CAPT) study (Philips et al. 2004).

2.2 The experiments

Based on the reasoning just explained, 14-day long GCM simulations were used for this

intercomparison. McICA uctuations for surface uxes integrated over two weeks are about
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20 times smaller than instantaneous values. Following R�ais�anen et al.'s (2004) calculations,

this corresponds roughly to radiative uctuations associated with fortnightly mean total

cloud fraction changes of �0.02. Hence, we are satis�ed that if signi�cant di�erences do not

appear after 14 days, it is unlike that the noise could somehow tunnel-up at longer scales

and signi�cantly alter a simulation relative to a noiseless reference.

There are several versions of McICA that yield substantially di�erent amounts of noise

(see R�ais�anen and Barker 2004). The least noisy incarnation was de�ned as the reference.

Most GCMs performed �ve experiments with varying amounts of noise, each consisting

of a 10-member ensemble. The experiments are described in the following subsections.

Ensembles were created for each experiment by starting the GCM 6 hours apart o� a \spun-

up" simulation. As such, the jth ensemble member of all experiments had the same initial

conditions. This initialization process is illustrated in Fig. 2.

Two sets of experiments were performed: one started from January 1, the other from July

1. This was to explore whether the impact of McICA stochastic noise is state-dependent in

addition to GCM-dependent. All indications suggest that this is not the case so only January

results are shown and discussed. In all cases, sea-surface temperatures were prescribed. For

brevity, the following explanation of experiments assumes a radiation code based on the

correlated k-distribution (CKD) method (Fu and Liou 1992); which was not always the case.
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2.2.1 Experiment 1: 1COL

If a single subcolumn is generated stochastically at each timestep and spectral integration

(over K quadrature points) is performed on that subcolumn, (1) becomes

hF i =
KX
k=1

F (�; k) (2)

where � represents the generated subcolumn. This approach yields copious McICA noise

and is referred to as \1COL ". Moreover, it resembles the method used in the Goddard

Institute for Space Studies GCM (per. comm., A. A. Lacis 2007).

2.2.2 Experiment 2: BASIC

Sampling is improved over 1COL by generating a subcolumn (cloudy or clear) for each

integration point and computing ux as

hF i =
KX
k=1

F (�k; k) (3)

where �k represents one of K generated columns. Being the most straightforward, code-

friendly version of McICA, it is referred to as the \BASIC "experiment.

2.2.3 Experiment 3: CLDS

Because GCMs have to compute clear-sky radiative uxes to estimate cloud radiative e�ects,

it is reasonable, though not necessary, to perform a full clear-sky calculation and devote all

of McICA's samples to the cloudy (variable) portion of a domain. Thus, by demanding that

randomly-generated subcolumns contain cloud, total ux is
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hF i = (1� Ac)
KX
k=1

F (�clr; k) + Ac

KX
k=1

F (�cld;k; k) (4)

where �clr represents the clear-sky subcolumn, �cld;k represents one of K cloudy subcolumns,

and Ac is vertically-projected cloud fraction. Ac can be estimated rapidly and accurately

by generating many subcolumns with a stochastic cloud generator that avoids estimation of

water contents. Since random sampling is con�ned to cloudy subcolumns, this experiment

is referred to as \CLDS ". Obviously, the amount of noise generated by BASIC is greater

than or equal to that produced by CLDS.

2.2.4 Experiment 4: SPEC

An e�cient way to reduce McICA noise is to sample additional cloudy subcolumns for

spectral intervals that contribute most to McICA's noise. These points are generally those

with large cloud radiative e�ects. As such, this version of McICA de�nes uxes as

hF i = (1� Ac)
KX
k=1

F (�clr; k) + Ac

KX
k=1

"
1

Nk

NkX
i=1

F (�cld;i;k; k)

#
(5)

where Nk are the number of samples generated for k, and N =
PK

k=1Nk is the total number

of samples generated. This version of McICA is referred to as \SPEC" because additional

samples are assigned to speci�c spectral intervals (cf. the splitting technique as described in

Marchuk et al. 1980). Note that for CLDS, Nk = 1 and so N = K. It was recommended

that for this model, however, N � 1:5K. R�ais�anen and Barker (2004) provide a means to

set fNkg that reduces variance optimally.
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2.2.5 Experiment 5: Reference simulations (REF)

Finally, a reference experiment, referred to as \REF", was performed, by most GCMs, and

characterized by very weak noise. The simplest and most economical way to do this is to use

the SPEC model with large N . The GFDL GCM uses a very small number spectral points

and therefore its REF experiment was the, less economical, ICA using K subcolumns (see

Pincus et al. 2006). Nevertheless, noise associated with REF is much smaller than 1COL's

and notably less than SPEC's.

3 Description of GCMs

Tables 1 and 2 summarize characteristics of the GCMs that participated in the intercom-

parison. CMC and GFDL are �nite volume models; the other four are spectral models.

Horizontal resolutions varied from �100 km to �250 km, and number of vertical layers

ranged from 24 to 91. While some subgrid-scale parametrizations are common to more than

one GCM (e.g., GEM and CCCma used the same radiation codes), and others use parame-

trizations with common lineages (e.g., ECMWF and ECHAM5), no two GCMs share the

exact same collection of parametrizations.

Morcrette (2000) and R�ais�anen et al. (2005) showed that changing the radiative timestep

�trad from 1 h to 3 h can inuence a GCM's simulation. With McICA there is the added

concern that large �trad might allow a GCM to incorporate the e�ects of radiative anomalies

into the overall character of the simulation (R�ais�anen et al. 2005). For the experiments

reported here, the GFDL and GEM models were run with a 3 h and 2 h timestep in addition
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to a 1 h timestep. Di�erences between the runs were very minor, so only results for the

shorter timestep are discussed hereinafter.

Lacking rules pertaining to description of unresolved horizontal variations in cloud water

and vertical overlap of fractional cloud, groups were left to de�ne them for themselves. While

this side-steps the utility of McICA, recall that it is the spread in McICA-generated stochastic

noise that is important for these experiments; details of unresolved cloud morphology are

secondary. As seen later, wide ranges of noise were achieved by all GCMs.

4 Results

Results are presented in two sections. The �rst summarizes variations in stochastic noise as

a function of GCM. The second presents GCM responses as a function of noise.

4.1 Magnitude of McICA noise

To quantify the magnitude of the stochastic noise generated for the �ve experiments, stan-

dard deviations of variables responsible for producing noise were computed for each rendition

of McICA by generating subgrid-scale clouds and calling the radiation code 10 times at each

radiative time-step for a single day (see Fig. 3). The variables are SW and LW radiative ux

pro�les, total cloud fraction, and cloud liquid and ice water paths (actually, water contents

are subject to noise directly).

As an illustrative example, Fig. 4 shows standard deviation of SW radiative ux at

the surface as a function of the corresponding mean for the 1COL, BASIC, and CLDS
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versions. The magnitude of noise and the rate at which it decreases with increasing samples

(left to right across the �gure) depends on several factors including number of spectral

intervals, diurnal cycle of cloud properties, frequency distribution of cloud fraction pro�le,

and assumptions about unresolved clouds. This plot shows the abundance of noise associated

with 1COL as well as the dramatic, and ubiquitous, reduction of noise when going from 1COL

to BASIC. The only GCM to show a sizable reduction in noise when going from BASIC to

CLDS, where the total number of samples remained the same, is the CCCma GCM. The

most likely reason for this has to do with the distribution of total cloud fraction; McICA

errors maximize at intermediate cloud fractions and vanish at clear-sky and almost vanish

at overcast. As Fig. 5 shows, the CCCma GCM has the fewest near-overcast and cloudless

cases and a large fraction of total cloud fractions near 0.25. The other GCMs have relatively

few intermediate total cloud fractions; especially ECHAM5 which produces numerous near-

clear and overcast events. Note that a GCM that produces only clear-skies and overcasts

will realize minimal variance reduction when going from BASIC to CLDS. This situation

should become increasingly prevalent as �xGCM ! 0.

From Fig. 4 alone one can predict, with reasonable con�dence, that most GCMs have

little to gain from CLDS, let alone the more elaborate SPEC. Nevertheless, as argued by

R�ais�anen and Barker (2004), all GCMs compute clear-sky uxes for diagnostic reasons, so

there is some motivation to employ CLDS and devote all available stochastic samples to the

cloudy, variance-generating, portion of a column.
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4.2 Impacts on GCM Simulations

While numerous �elds were saved from the simulations, so few exhibited signi�cant di�er-

ences that presentation of results focuses on low cloud fraction and 2 m air temperature;

the variables that showed the greatest sensitivities to noise. Results are presented in two

subsections: one focusing on fractional areas of the globe that exhibit statistically signi�cant

changes due to noise; and the other on time series analysis.

4.2.1 Fractional areas of statistically signi�cant di�erences

A convenient way to summarize the kind of results obtained here is the paired-di�erence

version of Student's t-test (e.g., von Storch and Zwiers 1999). This is because ensemble

members in one experiment have the same initial conditions as those in another experiment.

Hence, the experiments are not fully independent of each other. If two experiments, each

with N ensemble members, are being compared and xn and yn are the nth member of their

respective ensembles, de�ne dn = xn � yn. The null hypothesis to be tested is therefore H0:

�xy = 0, where �xy is mean of the population of di�erences d from which the sample, of size

N , was drawn. From sampling theory, the optimal test statistic is

t =
b�xy

Sxy=
p
N
; (6)

where b�xy is sample mean di�erence, and Sxy is corresponding unbiased sample variance.
Assuming that the sample di�erences follow Student's distribution, t is checked to see if it

lies beyond a speci�ed value, the signi�cance level, in the tail of the distribution. This is
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done by checking if

1

�
1
2B
�
1
2
; �
2

� Z t

�t

�
1 +

x2

�

�� �+1
2

dx > tcrit; (7)

where � = N � 1, B
�
1
2
; �
2

�
is the beta function, and tcrit = 1 � � where � is the level

of signi�cance one is testing for. If (7) is true, the sampled di�erence is considered to be

statistically signi�cant. Throughout this study, � = 0:05 implying that all reported tests

are at the 95% con�dence level. Note that if M samples are drawn at random from a

population, and sample pairs are tested via (6) and (7), then on average, �M of them will

exhibit statistically signi�cant di�erences. Reported here are fractional areas of regions with

GCM cells that exhibit statistically signi�cant di�erences. The regions are typically zonal

bands and the entire Earth.

R�ais�anen et al. (2005) showed that for CAM1.8, low cloud fraction exhibited the greatest

sensitivity to McICA noise. Low cloud is de�ned as cloud below 680 hPa. Figure 6 shows

Hovm�oller-like diagrams of the fractional area of zonal-bands with statistically signi�cant

di�erences in low cloud fraction for four renditions of McICA relative to REF. The striking

aspect of this set of plots is that each model responds di�erently to McICA noise, though all

but some of the 1COL versions display statistically insigni�cant rami�cations of noise. For

instance, CCCma and ECHAM5 show almost no dependence on noise level while CAM3 and

GFDL experience dramatically reduced sensitivities to noise going from 1COL to BASIC.

The two highest resolution models, GEM and ECMWF forecast models, show only a slight

dependence on noise level, but, despite being very di�erent models, they share some common

features. Namely, remarkably few signi�cant responses in the subtropical high regions with

persistent, though minor, di�erences throughout the tropics. Presumably di�erences in the
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tropics stem from local processes responding very quickly to noise but of such limited strength

that their inuences are not felt very far outside the cell they were initiated in.

Several models, ECMWF, ECHAM5, GEM, and GFDL, show similar patterns for the

mid- and high-latitudes: a rather sudden transition, at roughly 8 days into the simulations,

from areas of di�erence slowly increasing with time to being independent of time. Neverthe-

less, most latitudes have areas of signi�cant di�erence of approximately 5% so these appear

to be uctuations due simply to sampling from the same population with little, or nothing,

to do with response to noise.

The results just shown are applicable to 2 h instantaneous samples. Figure 7 shows global

maps of the location of signi�cant di�erences in low cloud fraction averaged over the 14th

day of the BASIC simulations. In general, the fractional areas showing signi�cant di�erences

relative to REF are much smaller than at the 2 hourly zonal level; the largest area is a meager

3.6% for the CCCma model. Moreover, one is hard-pressed to discern any pattern in any of

these plots. This is another positive feature for it suggests that the e�ects of noise have not

been incorporated and transferred up-scale to a�ect change on regional scales.

Figure 8 shows time series of fractional areas of the globe that exhibit statistically signi�-

cant noise-induced responses on 2m air temperature as functions of time. As with low cloud,

each model displays a unique response to noise. Most models and renditions of McICA begin

the simulation looking as though they were drawn from the same population as REF. The

1COL versions of CAM3 and GEM show slight impacts of noise, while the corresponding

versions of CCCma and GFDL appear to be heading toward acceptance of H0 by day-14.

Consistent with R�ais�anen's et al. (2005) analyses, all other cases are statistically indistin-
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guishable from REF.

Precipitation is another crucial climatic variable that one would hope is not inuenced

by noise. Moreover, precipitation �elds di�er vastly from cloud fraction and temperature on

account of their extreme intermittency. Figure 9 shows Hovm�oller-like diagrams of fractional

areas of signi�cant di�erence relative to REF for large-scale precipitation for three GCMs

and total precipitation for the remaining three. Only 1COL and BASIC are shown. Plotted

along the bottom are time series of corresponding global areas. Most plots and curves

demonstrate extremely minor a�ects due to noise; often even smaller than impacts on 2 m

temperature. The exception is ECMWF's run with 1COL which shows a marked response

in the tropics. Again, however, it is highly unlike that a modelling group would use 1COL,

and the impact is clearly crushed by the noise reduction of BASIC; which is ECMWF's

operational con�guration (see Morcrette et al. 2008).

As a �nal means of portraying the rami�cation, or lack thereof, of McICA noise, Fig.

10 shows fractional areas of the globe showing statistically signi�cant changes to low cloud

fraction and 2 m temperature averaged over the 14th day as functions of globally-averaged

McICA noise associated with net shortwave ux at the surface. These plots show succinctly

that if ever there is an issue with noise, it is bound to the 1COL version of McICA. They

also show that the CAM stands the most to gain by going from 1COL to BASIC, while the

CCCma stands the most to gain by going from BASIC to CLDS.
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4.2.2 Time series analysis

An obvious area to look for rapid development of responses due to high frequency noise

generated by McICA is in the magnitude of temporal uctuations for variables ' with short

characteristic response times. Variables in the lower atmosphere or at the surface are good

candidates; particularly ones that are inuenced directly by McICA-related noise. For a

discrete time series spanning a length of time L, uctuations of ' are assessed via the

second-order structure function which is de�ned as

S2(r) =


[' (t+ r)� ' (t)]2

�
(8)

where t is time and r is a time lag. S2(r) is related, by the Wiener-Khinchine theorem, to

the power spectrum (see Davis and Marshak 2005), and is a very intuitive measure of typical

uctuations over a wide range of time. For ranges of r that behave like

S2(r) � r�(2); (9)

1 < � = �(2) + 1 < 3

where � is the spectral exponent of the power spectrum.

The region of central Canada bounded by 55�N to 65�N and 95�W to 105�W has a

continental winter climate with surface temperatures that are sensitive to the presence of

cloud. Averaging over this relatively large area, which is about 7 times as large as the coarsest

GCM grid-spacing, should alleviate di�erences that might arise due to variable grid-spacings

among the GCMs. Figure 11 shows S2(r) for 2 m air temperatures averaged over this

region. Clearly, McICA noise has little impact of uctuations of surface temperature. The
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magnitude of di�erences as a function of McICA noise shown here echo not only other areas

of the globe but also resemble closely other surface variables such as precipitation rate and

pressure. Note also that all models agree nicely on the magnitude of S2(r) and that they all

show a well-de�ned scaling regime between roughly r = 1 h to r = 48 h with �(2) ' 3=2 (or

� ' 5=2).

The variable whose S2(r) exhibited by far the largest sensitivity to McICA noise was,

again, low cloud fraction. Figure 12 shows S2(r) for low cloud fraction averaged for the region

bounded by 5�S to 5�N and 170�E to 180�E. This region showed particular sensitivity to

McICA noise as documented by R�ais�anen et al.(2005) for CAM1.8. The most striking aspect

of this plot is the hyper-sensitivity of the GFDL model (regardless of radiation timestep

length) to substantial McICA noise generated by 1COL where uctuations on short time

scales are almost an order of magnitude larger than those for REF and �(2) ' 0 for all

r whereas �(2) ' 1 for REF for r . 24 h. Evidently, McICA noise has added a large

amount of variance directly to low cloud fraction estimates coming straight from the cloud

parametrization. For its BASIC simulation, however, uctuations almost match perfectly

REF's for all r.

The plot in Fig. 12 for CAM3 shows that uctuations in low cloud fraction for r . 3

h increase slightly as McICA noise is added. This is perfectly understandable. For larger

r, however, the magnitude of typical uctuations decrease as noise increases which seems

to be counter-intuitive. As a result, going from REF to 1COL �(2) changes from �7/6 to

�5/6. For the CCCma, ECHAM5, and GEM GCMs the introduction of McICA noise has

little a�ect on S2(r). For ECMWF, however, the magnitude of S2(r) is least for 1COL for

19



all r. Again, this seems counter-intuitive for it implies that the addition of McICA noise

suppresses, albeit slightly, uctuations of low cloud fractions. To lesser extents, this is also

the case for ECMWF's 2 m temperature as well as low cloud fraction for CAM3 and GEM.

Another aspect of Fig. 12 to note, though not related directly to McICA noise, is that

while three of the GCMs, CAM3, CCCma, and GEM, exhibit clear diurnal cycles in low

cloud fraction for this region with relative maxima in S2(r) at r = 12 + 24n h and minima

at r = 24(n+ 1) h, for n = 0; 1; 2; 3 : : :, the other three lack a diurnal signal. Moreover, the

magnitude of S2(r), for any r, is 5 to 10 times larger for the CCCma and GEM models than

for the other models. These di�erences swamp McICA-generated di�erences.

To further the points just discussed, Fig. 13 shows the global impact of McICA noise

on �(2) for the semi-diurnal range (i.e., r 6 12 h). Consistent with Fig. 12, CAM shows a

ubiquitous reduction in �(2) as noise increases; CCCma, ECHAM5, and GEM show almost

no a�ect; and ECMWF exhibits very little impact as well except a slight, but general, and

again counter-intuitive, increase in �(2) going from REF to 1COL. The odd man out is

GFDL where it is now clear that the massive reduction in �(2) going from REF to 1COL

as seen in Fig. 12 is actually a global phenomenon that is far from fully recovered by

BASIC. Interestingly, however, the corresponding impacts of McICA noise on �(2) for total

precipitation, large-scale precipitation, and 2 m air temperature were all very minor (and

not worth showing). Hence, the large changes to uctuations in low cloud fraction involved

non-precipitating clouds.
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5 Conclusions

Broadband radiative uxes computed by the Monte Carlo Independent Column Approxi-

mation (McICA) are demonstrably unbiased with respect to the full ICA. As such, McICA

represents somewhat of a d�enouement for the genre of GCM radiative transfer algorithms

that aspire to reproduce full ICA results. The penalty for eliminating biases, however, is

random noise. If it so happens that this random noise, extraneous information injected at the

GCM's inner-scale, a�ects statistically signi�cant impacts on GCM simulations, this could

render McICA useless. Thus, this paper summarizes the impact of random noise generated

by McICA on a diverse group of GCMs.

With the exception of the excessive random noise associated with the 1COL version of

McICA, noise produced by all realizations of McICA, from those most likely to be used

in GCMs to those that squelch noise unnecessarily, have no statistically signi�cant a�ects

on short, 14-day, GCM simulations. Even for the 1COL version not all GCMs showed

a signi�cant response to noise and those that did were not impacted signi�cantly for all

variables. For instance, the CAM3 GCM showed signi�cant impacts for low cloud and 2 m

surface temperature due to noise from 1COL, but its large-scale precipitation was inuenced

only very weakly. For the BASIC and CLDS versions of McICA, no model displayed any

signi�cant impacts from noise. This corroborates previous studies by Pincus et al. (2003;

2006), R�ais�anen et al. (2005), and Morcrette et al. (2008) and suggests strongly that for

most applications, McICA-generated noise should be of little or no concern.

There were some peculiar results. For example, the two weather forecast models, which
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operated at the highest spatial resolution, actually showed a slight reduction in the magnitude

of low cloud uctuations at most frequencies as McICA noise increased. This seems counter-

intuitive; one would expect introduction of high-frequency noise to increase high-frequency

uctuations in most variables. Another GCM showed only an increase in high-frequency low

cloud uctuations when noise increased and reductions for frequencies longer than a day.

The experiments performed and assessed here address only the rami�cations of noise on

fast to intermediate climatic variables. The underlying assumption was that if these variables

were not inuenced, it is unlikely that McICA's noise could somehow emerge later on. Of

course, given the complexity of modern GCMs the validity of this assumption cannot be

taken fully for granted. Tests should be extended to interactive ocean-atmosphere GCMs

integrated over substantial stretches of time. Nevertheless, until it is demonstrated that

omission of 3D radiative transfer e�ects in conventional GCMs is detrimental to simulations

(i.e., the ICA is an inadequate standard), results presented here suggest that McICA should

be su�cient for most applications of conventional GCMs.
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Table 1. Summary of the characteristics of participating GCMs.

institute model resolution
dynamic time
step (min.)

save
interval (hr.)

EC-CMC GEM 1.5��1.5�; L60 30 2

EC-CCCma CCCma T47; L35 20 2

FMI ECHAM5-FMI T42; L31 20 2

ECMWF ECMWF TL159; L91 60 2

GFDL GFDL-AM2 2��2.5�; L24 60 1 and 3

PSU CAM3 PSU T42; L26 60 1
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Table 2. Summary of the characteristics of GCM radiative transfer models.

model quadrature pts (SW/LW) radiation time-step

GEM 35/46 1 h

CCCma 35/46 1 h

ECHAM5-FMI 4/140 1 h

ECMWF 112/140 1 h

GFDL 18/7 1 h

CAM3 PSU 55/67 1 h
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Figure captions

Fig. 1. Left plot shows diurnal-mean solar irradiance at the top-of-atmosphere (TOA) as

a function of time and latitude. Right plot shows corresponding standard deviation of solar

irradiance at the TOA due simply to Earth's rotation. Corresponding values for net surface

irradiance are about half those shown here. Light and dark shaded regions denote perpetual

Sun-up and Sun-down periods, respectively.

Fig. 2. Schematic diagram showing production of ensembles of 14-day simulations. All

GCMs produced 10-member ensembles (i.e., M = 10) though not all performed all 5 ensem-

bles which are denoted here as: 1COL; BASIC; CLD; SPEC; and REF.

Fig. 3. Schematic diagram showing production of noise estimates for various renditions

of McICA (denoted here as: 1COL; BASIC; CLD; SPEC; and REF).

Fig. 4. Standard deviation � of surface solar irradiance as a function of mean solar irradi-

ance � for three versions of McICA (1COL, BASIC, and CLD) for the six GCMs considered

in this study. Colours indicate the natural logarithm of the number of samples in each bin

(of which there are 15x15).

Fig. 5. Area-weighted relative frequencies of total cloud fraction for the entire Earth for

the six GCMs used in this study. f0:05 and f0:95 refer to the fractional areas with total cloud

fractions less than 0.05 and greater than 0.95.
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Fig. 6. Hovm�oller-like diagrams of fractional areas of zonal bands exhibiting statisti-

cally signi�cant di�erences, at the 95% con�dence level, in low cloud fraction for the various

renditions of McICA relative to their respective reference (REF) simulations. McICA noise

decreases from left to right. Note that if samples were drawn only from the REF simulation

(i.e., the experimental samples were unambiguously pulled from the control population),

plots would be characterized by white noise, resembling \snow" on a TV screen, with means

of 0.05.

Fig. 7. Global plots showing statistically signi�cant di�erences between mean low cloud

fractions on the 14th day of the simulations for the BASIC rendition of McICA relative to the

corresponding REF control. Light blue and red correspond to under- and over-estimations

by BASIC that are signi�cant at the 95% con�dence level. Likewise, dark blue and red

signify the same but at the 99% con�dence level. The GCM is indicated in the title along

with the fractional area of the globe having statistically signi�cant di�erences at the 95%

con�dence level.

Fig. 8. Fractional areas of the globe exhibiting statistically signi�cant 2 m air temper-

ature di�erences, at the 95% con�dence level, relative to the REF control as functions of

time for all experiments performed by all GCMs. Had the experiments been drawn from the

control population, lines would have been noisy with means very close to 0.05; as most of

the curves are beyond about the 10th day.
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Fig. 9. Along the top are two rows of Hovm�oller-like diagrams of fractional areas of

zonal bands exhibiting statistically signi�cant di�erences, at the 95% con�dence level, in

precipitation for the 1COL and BASIC renditions of McICA relative to their respective ref-

erence (REF) simulations. Had samples been drawn only from the REF simulation, plots

would have been characterized by white noise with a mean of 0.05 (corresponding to the

95% con�dence level). The lower row of line plots show corresponding fractional areas of

the globe exhibiting statistically signi�cant precipitation di�erences, at the 95% con�dence

level, relative to the REF control as functions of time. Had the experiments been drawn

from the control population, lines would have been noisy with means very close to 0.05.

Fig. 10. Plot on the left shows fractional areas of the globe exhibiting statistically sig-

ni�cant di�erences, at the 95% con�dence level, as a function of McICA noise (i.e., standard

deviation) associated with net shortwave surface irradiance. Plot on the left is the same

except it applies to 2 m air temperature. 1COL results are on the right-side of the plots.

Fig. 11. Second-order structure functions for 2 m air temperature averaged over the

region indicated in the title as functions of lag time. Results are shown for three versions

of McICA for each GCM. All analyses were for data with 2 h timesteps save for the CAM3

GCM which had a 1 h step. Grey line is for reference and highlights the consistency among

GCMs and McICA noise levels.
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Fig. 12. Second-order structure functions for low cloud fraction averaged over the region

indicated in the title as functions of lag time. Results are shown for three versions of McICA

for each GCM. All time series used data with 2 h timestep save for the CAM3 GCM which

had a 1 h step. Vertical lines are for reference and indicate periods of 12 and 24 h.

Fig. 13. Global plots of the scaling exponent �(2) in (9) for low cloud fraction for three

versions of McICA. These quantities correspond to the scaling regions shown in Fig. 12 for

r 6 12 h.
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